Paper Code: EC-703/EEC-703

B.Tech. SEVENTH SEMESTER EXAMINATION, 2016-17 VLSI DESIGN

Roll No.

[Time: 3 Hours] **Note:** Attempt all questions. All questions carry equal marks

- 1. Attempt any four parts of the following:-
 - (a) Explain the CMOS Inverter circuit operation with the help of VTC, clearly mark the operating regions of nMOS and pMOS transistors on it. Also calculate expression of switching voltage (V_{th}) for the same. Using the expression for switching voltage (V_{th}) find out the relation between (W/L)n and (W/L)p for an ideal symmetric inverter.
 - (b) Define the VLSI design process and draw Y- Chart.
 - (c) Define the layout design rules by defining micron for any particular technology. Draw a stick diagram of CMOS NOR gate
 - (d) Explain the terms Regularity, Modularity, Locality and Design Hierarchy. Define all types of MOSFET capacitances
 - (e) Explain Scaling, Narrow Channel effect and Channel Length Modulation in MOS.
 - (f) Discuss the classification of Dynamic CMOS logic families.
- 2. Attempt any two parts of the following:-
 - (a) Consider a CMOS inverter circuits with the following parameters $V_{DD} = 3.3V$, $V_{Ton} = 0.6V$, $V_{Top} = -0.7V$, $k_n = 200 \mu A/V^2$, $k_p = 80 \mu A/V^2$, $k_R = 2.5$ Calculate the noise margin of the circuits.
 - (b) Consider a CMOS inverter, with the following device parameters, $V_{DD} = 3.V$, $V_{Ton} = 0.6V$, $V_{Top} = -0.7V$, $\mu_n C_{ox} = 60\mu A/V^2$, $\mu_p C_{ox} = 20\mu A/V^2$, $\lambda = 0$. Determine the $\left(\frac{W}{L}\right)$ rations of the nMOS and the pMOS transistors such that the switching threshold is $V_{th} = 1.5V$.
 - (c) Design the circuit described by the Boolean function Y = (A + C)(B + C)(D + E) using CMOS logic. Calculate the equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $\left(\frac{W}{L}\right) = 10$ for pMOS transistor and $\left(\frac{W}{L}\right) = 5$ for all nMOS transistor.
- 3. Attempt any two parts of the following:-
 - (a) Explain the CMOS inverter switching characteristic using the digital model. Explain the definitions of delays and transition times. Prove that for a CMOS inverter switching voltage

$$V_{th} = \frac{V_{To,n} + (V_{DD} + V_{To,p}) \sqrt{\frac{1}{K_R}}}{1 + \sqrt{\frac{1}{K_R}}}$$

Page 1

(10x2=20)

(5x4=20)

[Max. Marks:100]

(10x2=20)

- (b) Estimate the intrinsic propagation delay $t_{PHL}+t_{PLH}$ of a three-input NAND logic gate using minimum size transistor ($R_n=8k\Omega$, $Rp=24k\Omega$ and $C_{outn}=4.8$ fF).Estimate the circuit delay also when the gate is driving a load capacitance of 100fF.
- (c) Discuss the operation of five stage Ring Oscillator circuits & determine the oscillation frequency with PDP ($R_n=8k\Omega$, $R_p=24k\Omega$, $C_{outn}=4.8fF$, $V_{DD}=5V$).
- 4. Attempt any four parts of the following:-
 - (a) Design 2 input EXOR logic gate using CMOS transmission gate.
 - (b) Explain the behavior of pass transistor in dynamic CMOS logic implementation with considering the transfer of logic 1 and 0 by NMOS.
 - (c) In a CMOS inverter power supply $V_{DD} = 5V$, determine the fall time, which is define as the time elapsed between the time point at which $V_{out}=V_{90\%}=4.5V$ and the time point at which $V_{out}=V_{10\%}=0.5$. The output load capacitance is 1pF. The nMOS transistor parameters are as follows: $V_{Tn}=1.0V$,

$$\mu_n C_{ox} = 20 \mu A/V^2, \left(\frac{W}{L}\right)_n = 10 .$$

- (d) Design a D flip-flop using CMOS logic circuits.
- (e) In a logic Design logic function is Z = (A+B+C+D)(E+F+G)(H+I) implemented with inputs (A,E,H) are high and other inputs are low. Draw a domino CMOS circuits diagram with implements Z.
- (f) Draw a neat diagram of CMOS SRAM cell and explain it.
- 5. Attempt any four parts of the following:-

(5x4=20)

- (a) Define the term Controllability and Observability. Discuss in brief Ad-hoc Testable design techniques.
- (b) Define different types of defects and faults. Explain the implementation of Built-In Self Test (BIST) design techniques for VLSI circuit testing.
- (c) What are the various source of power dissipation in CMOS circuit with proper diagram?
- (d) Discuss the variable threshold CMOS and multi threshold CMOS circuit for low power VLSI Design.
- (e) Define the process of estimation and Optimization of switching activity with an example.
- (f) Discuss the operation of DRAM cell with suitable CMOS circuits.

(5x4=20)