	Roll No.					
Paper Code: CS-303						

B.Tech.

(SEM III) ODD SEMESTER THEORY EXAMINATION, 2016-17 COMPTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

[Time: 2 Hours]

Note:

- (*i*) Attempt ALL questions.
- (*ii*) Notations/ Symbols/ Abbreviations used have usual meaning.
- Q.1. Attempt any FOUR parts of the following:-
 - a) Explain the following terms. Rate of Convergence, Illconditioned system of equations, Machine Epsilon
 - **b**) Show at least two scenarios through graphical sketch when choice of initial guess in Newton Raphson method may lead to divergence or endless cycle.
 - c) Determine the vaue of **p** and **q** so that the order of iterative method

$$\mathbf{x}_{n+1} = \mathbf{p}\mathbf{x}_n + \mathbf{q}\mathbf{a}/\mathbf{x}_n^2$$

for computing root of the equation $x^3 - a = 0$ is as high as possible.

- **d**) Derive the expression for Aitken acceleration of improving linear convergence of an iterative method.
- e) Perform four iterations of the Newton Raphson method with initial guess of **3** to find the approximate value of cube root of **23**.
- **f**) Using Sturm theorem, determine the number of real roots of the given polynomial in the interval [-3, 3] with their multiplicity.

$$x^4 - 8x^2 + 1 = 0$$

- a) Show that polynomials $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = x^2 1/3$ are orthogonal polynomials over the interval [-1, 1] with respect to weight function W(x) = 1. Use these polynomials to obtain normal equations for second degree approximation of $f(x) = x^4$ on [-1, 1] according to least squares principle.
- b) Obtain the natural cubic spline interpolating polynomial valid in the interval [2, 3] for the given function f(x).

xi	1	2	3	4
$f(x_i)$	3	9	27	81

- c) Determine the step size **h** that can be used to tabulate the value of e^x at equispaced pints in the interval [0, 1] so that error in the quadratic interpolation to the f(x) is less than 0.0005.
- Q.3. Attempt any TWO parts of the following:
 - a) Given the following values of $f(x) = \log x$, find the approximate values of df(x)/dx at 2.2 using quadratic interpolation and obtain the upper bound on the error.

$$\begin{array}{l} f(2.0) = 0.69315, \\ f(2.2) = 0.78846, \\ f(2.6) = 0.95551 \end{array}$$

(6x2=12)

(6x2=12)

(3.5x4=14)

[Max. Marks: 50]

- **b**) Write Simpson's 1/3 method of integration and derive the local and global truncation error term for the method.
- c) Evaluate the following integral using Guass-Legendre 3-point integration method. $I = 0\int^2 dx / (x^2+2x+10)$

Q.4. Attempt any **TWO** parts of the following:

(6x2=12)

a) Find the optimal relaxation parameter for the Successive Over Relaxation (SOR) iteration scheme for solving the given system of simultaneous equations.

$$4x - y = 3$$

-x + 4y - z = 2
-y + 4z = 3

Also, determine the rate of convergence of the method.

b) Using fourth order Runge-Kutta method, obtain numerical solution of following differential equation at x = 0.4

$$dy/dx = (y+x)/(y-x); y(0) = 1$$

Assume step size h = 0.2.

c) Following table shows the observed and expected frequencies in tossing a dice 120 times. Test the hypotheses that dice is fair, using significance level of 0.05.

Face	1	2	3	4	5	6
Observed Frequency	25	17	15	23	24	16
Expected Frequency	20	20	20	20	20	20

Given that for 5 degrees of freedom, value of chi-square (χ^2) at 0.95 and at 0.05 are 11.1 and 1.15 respectively.