[BT-31A]

Paper Code: BT-31A

M. Tech
THIRD SEMESTER EXAMINATION, 2016-17
BIOSEPARATION & DOWNSTREAM PROCESSING

[Time: 3 hrs.]

Note: Attempt ALL questions. Assume suitable data, if required. All question carry equal marks.

- 1. Attempt any *four* parts of the following: -
 - (a) Define Partition coefficient, logP and log D.
 - (b) Location factor in enzyme and protein release during cell disruption.
 - (c) Capacity factor and relative retention in chromatography and its significance.
 - (d) Explain Σ factor using tubular and disc stack centrifuge.
 - (e) Define pelleting efficiency of rotor. If the time to pellet a sample in "old" rotor is 20 min. Determine the time it would take for the same sample to pellet in a "new" rotor. K factor for old and new rotor is 3610 and1676 respectively.
- 2. Attempt any four parts of the following: -
 - (a) Discuss the basic principle of ion exchange chromatography and its application.
 - (b) Elucidate the vapor diffusion method of crystallization.
 - (c) Describe the parameters affecting the cell disruption and rate of product release.
 - (d) Explain the principle and process of crystallization.
 - (e)Define "g" factor of a centrifuge. The culture broth is centrifuged in a EBA-20 centrifuge having a rotor radius of 100mm and a rotational speed of 10000rpm. If a worker, centrifuged the same sample in an another centrifuge having rotor radius of 80mm,then calculate the rpm that he applied. During the process g factor has been kept constant.
- 3. Attempt any two parts of the following: -
 - (a) Write short notes on the any four of the following
 - i. Filter cake
 - ii. Rotatory vacuum filter
 - iii. Spray drying
 - iv. Pressure leaf filter
 - v. Freeze drying
 - (b) Enumerate mechanical and non mechanical methods for the isolation of intracellular metabolites
 - (c) Define the sedimentation theory. A settling time is used to sediment microbial pellets with the density of 2.09gm/ cm³ and a diameter of 200µm. The particle free molecule has a density of 2gm/cm³ and viscosity is 1.1cP. Calculate the settling time by assuming that the pellets quickly reached their maximum terminal velocity.

(5x4=20)

[Max. Marks: 100]

(5x4=20)

(10x2=20)

Roll No.

4. Attempt any *two* parts of the following: -

- (a) Give the principle of centrifugation. Discuss the operation of tubular bowl and disc stack centrifuge.
- (b) Discuss the challenges in bio separation engineering. Describe the criteria for the selection of recovery process for primary metabolite production.
- (c) Calculate retention factor, relative retention, retention time and resolution of ethyl benzene and o-xylene mentioned in table

Analyte	Retention time (min)	Area	Peak width at the base
Solvent(t _m)	1.782	NA	NA
Benzene	4.938	598833	0.099
n-heptane	6.956	482864	0.100
Ethylbenzene	13.359	510009	0.092
o-xylene	13.724	618229	0.087

5. Attempt any two parts of the following: -

(10x2=20)

- (a) Discuss different types of stationary phases in liquid chromatography. Explain the basic principle of gel filtration and affinity chromatography and its application.
- (b) A continuous disc-stack centrifuge is operated at 20,000 rpm for separation of baker's yeast. 60% cell recovery was at a feed rate of 50 L/min. At constant centrifuge speed, solids recovery is inversely proportional to flow rate. Find out the-
 - (i) Flow rate required to achieve 80% cell recovery if centrifuge speed is maintained constant.
 - (ii) Operating speed required to achieve 90% recovery at a feed rate of 50 L/min.
- (c) Define filtration and derive an equation for time of filtration.