Printed pages: 2	2									AS102			
(The paper code and roll No. to be filled in your answer book)													
Roll No.													

B TECH (SEM I) CARRY OVER EXAMINATION 2016-17 ENGINEERING PHYSICS I

TIME: 2 Hours

Total Marks: 50

Note: Attempt all questions. All questions carry equal marks. Assume standard data wherever needed.

Q1. Attempt any **two** parts of the following:

- (a) What was the aim of Michelson-Morley experiment? Explain its negative results.
- (b) What is time dilation? Describe experimental evidence to show time dilation is a real effect.
- (c) Deduce Einstein's mass-energy relation, $E=mc^2$ and discuss it.
- Q2. Attempt any **two** parts of the following:
 - (a) Explain the wave-particle duality. Derive the de-Broglie wavelength of a particle as a function of temperature.
 - (b) State and explain the Heisenberg's uncertainty principle. Using this principle show that electron can not reside in an atomic nucleus.
 - (c) Derive time independent Schrodinger wave equation and explain the physical significance of wave function.
- Q3. Attempt any **two** parts of the following:
 - (a) Find the probabilities of finding a particle trapped in a box of length L in the region from 0.45L to 0.55L for the ground state and the first excited state.
 - (b) Discuss the constructive and destructive interference in thin film due to reflected light.
 - (c) Newton's ring arrangement is used with a source emitting two wavelength λ_1 =6000A° and λ_2 = 4500A° and it is found that the nth dark ring due to λ_1 coincide with (n+1)th dark ring due to λ_1 . If the radius of curvature of the curved surface is 90 cm, find the diameter of the nth dark ring.

- Q4. Attempt any **two** parts of the following:
 - (a) A lens of focal length 100 cm forms Fraunhofer pattern of a single slit of width 0.04 cm in its focal plane. The incident light contains two wavelengths λ_1 and λ_2 . It is found that the fourth minimum corresponding to λ_1 and the fifth minimum corresponding to λ_2 occur at the same point 0.5 cm from the central maximum. Compute λ_1 and λ_2 .
 - (b) What is grating? Explain dispersive power of grating.
 - (c) What is double refraction? Explain the working of a Nicol prism.
- Q5. Attempt any **two** parts of the following:
 - (a) Explain spontaneous and stimulated emission of radiation. How stimulated emission takes place with exchange of energy between Helium and Neon atoms?
 - (b) Calculate the numerical aperture, acceptance angle and critical angle of the optical fiber if the refractive indices of the core and cladding are 1.50 and 1.45 respectively.
 - (c) What is principle of Holography? Explain construction and reconstruction of images in holography.