Printed pages: 2						AS103/EAS103				
(The paper code and roll No. to be filled in your answer book)										
1	book)	book)	book)	book)	book)	book)	book)	book)		

B TECH (SEM I) CARRY OVER EXAMINATION 2016-17 **ENGINEERING MATHEMATICS**

TIME: 3 Hours

Note: Attempt all questions. Allquestions carry equal marks.

Q1. Attempt any two parts of the following:

[10x2=20]

[10x2=20]

[10x2=20]

Total Marks: 100

(a) If $Y = sin(m sin^{-1} x)$, prove that $(1-x^2)y_{n-2} - (2n-1)xy_{n+1} - (n^2 - m^2)y_n = 0$

Also find $y_{n/0}$ (b) If $w = \sqrt{x^2 + y^2 + z^2}$, x = ucosv, y = usinv and z = uvthen prove that $u \frac{\partial w}{\partial u} - v \frac{\partial w}{\partial v} = \frac{u}{\sqrt{1 + v^2}}$

(c) Trace the curve $3ay^2 = x(x-a)^2$

Q2. Attempt any two parts of the following:

- (a) If $u = x(1-r^2)^{-1/2}$, $v = y(1-r^2)^{-1/2}$, $w = z(1-r^2)^{-1/2}$ the show that $\frac{\partial(uvw)}{\partial(xyz)} = (1-r^2)^{-5/2}$ where $r^2 = x^2 + y^2 + z^2$
- (b) Expand $f(xy) = e^{x} tan^{-1}y$ about point (1,1) up to second degree term.
- (c) Find the maximum value of *u* where u = sinxsinysin(x+y)

Q3. Attempt any two parts of the following:

(a) Find the rank of matrix by reducing to echelon form $A = \begin{bmatrix} 1 & a & b & c \\ 0 & c & d & 1 \\ 1 & a & b & 0 \\ 0 & c & d & 1 \end{bmatrix}$

Page 1

- (b) For what value of λ the system of equations x+y+z = 1, x+2y+4z = λ, x+4y+10z = λ² have a solution and solve them in each case.
- (c) Using Caylay's Hamilton theorem, find the inverse of the matrix A⁻¹ when

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

Q4. Attempt any two parts of the following:

[10x2=20]

[10x2=20]

(a) Evaluate the following gamma function:
$$\frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+1)}$$
(b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ and hence show that $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$
(c) Evaluate the triple integral $\int_{0}^{0} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} (xyz) dx dy dz$.

Q5. Attempt any two parts of the following:

(a) Show that
$$curve\left(\frac{\vec{a} \times \vec{r}}{r^3}\right) = -\frac{\vec{a}}{r^3} + \frac{3\vec{r}}{r^5}(\vec{a}, \vec{r})$$

(b) Verify the Gauss divergence theorem $\int_{c} \left[(x^{3} - yz)\hat{i} - 2x^{2}y\hat{j} + 2\hat{k} \right] \hat{n} ds$ where s

denotes surface of cube bounded by plane x = 0, x = a; y = 0, y = a; z = 0, z = a.

(c) Evaluate the surface integral $\iint_{s} [xdydz + ydzdx + zdxdy]$ where s is the portion of the plane x + 2x + 3z = 6 which lies in first extent

plane x + 2y + 3z = 6 which lies in first octant.