Paper Code: STR 32-D

M.TECH

(SEM III) ODD SEMESTER EXAMINATION 2015-2016 FOUNDATION ANALYSIS AND DESIGN

Time: 3 Hours

Total Marks: 100

Note: (i) Attempt ALL questions.

(ii) Use of Code is allowed

(iii) Marks are indicated against each question.(iv) Assume any data suitably, if required and not given.

1.	Atte	empt any TWO questions:	10x2=20	
	(a)	What do you understand by bearing capacity of soil? Name different methods for determination of Bearing Capacity. Explain the following terms.		
		i. Gross pressure intensityii. Net ultimate bearing capacity		
		iii. Allowable bearing pressure		
		iv. Safe bearing pressure		
		v. Ultimate bearing capacity		
	(b)	What will be the gross and net safe bearing pressure of sand having $\phi = 30^0$ and effective unit weight 1.35 tones/m ³ under the following cases:		
		i. 1.00 m wide strip footing		
		ii. 1.00m X 1.00m square footing		
		In the above problems, consider the footing is placed at a depth of 1	-	
		surface and water table is at a great depth. Assume a factor of saf		
		Terzaghi's theory. Given for $\varphi = 30^{0}$ from Terzaghi's chart N _q = 47, N	$N_{\gamma} = 4.5$	
	(c)	A strip footing is to carry a load of 100 kN/m at a depth of 1m.	. Shear strength	
		parameters for the soil are $c = 0$ and $\phi = 31^{\circ}$. Determine the minimum		
		footing for a FOS = 3 against shear failure. The water table may ris	e to the base of	
2.	Atte	the footing. Take Gs = 2.65, and γ = 16 kN/m ³ . empt any TWO parts of the following	10x2=20	
		What are the different causes of failure of foundation? Design a		
	(a)	concrete wall footing for a wall 450 mm thick carrying a load of 39		
		run. The safe bearing capacity of the soil is 140 kN per meter ² . Use M	1	
			1 1	
	(b)	What factors are to be considered for designing of foundation? An general requirements of foundation for satisfactory performance. Fit		
		the depth of foundation required for a column carrying an axial load of		
		safe bearing capacity of the soil is 120 kN/m^2 . The soil at the site w		
		and has an angle of repose of 28°.	J	
	(c)	A trapezoidal footing is to be produced to support two square column	ns of 30 cm and	
		50 cm sides respectively. Columns are 6 metres apart and the safe bea	aring capacity of	
		the soil is 160 kN/m ² . The larger size column carries 3000 kN w		

		carries 2000 kN. Design a suitable size of the footing so that it does not extend beyond the faces of the columns.		
3.	Atte	mpt any TWO parts of the following	10x2=20	
	(a)	a) What are different types of foundation, explain them with neat sketch. Write general Principle of Design of Combined footing either Rectangular or Trapezoi with neat sketch.		
	(b)	A square column 400mm x 400mm carries an axial load if 1500 kN. Design square footing for the column. The safe bearing capacity of the soil is 150 kN $/m^2$. Use M ₂₀ concrete and Fe 415 steel.		
	(c)	Design a reinforced concrete combined rectangular footing for two columns A and B located 3.60 m apart. The sizes of the column 400mm x 400mm and 600mm x 600mm and the loads on them are 1000 kN and 1500 kN respectively. The projection of the footing parallel to the length of footing beyond axis of the column A is limited to 590 mm. the safe bearing capacity is 170 kN /m ² . Use M_{20} concrete and Fe415 steel.		
4.	Atte	Attempt any TWO parts of the following10x2=20		
	(a)	What do you understand by soil-structure interaction (SSI).What are the critical aspects of SSI. What are the different methods of analysis? Explain any one of these in brief.		
	(b)	Design a reinforced concrete cantilever type retaining wall having a 5 m tall stem. The wall retains oil level with its top. The soil weighs 18000 N/m ³ and has angle of repose of 30°. The safe bearing capacity of the soil 200 kN/m ² . Use M_{20} and Fe415.		
	(c)	Explain general principle for design of under- reamed pile. Under what condition these types of foundations are adopted.		
ļ		these types of foundations are adopted.		
5.		these types of foundations are adopted. te short notes on any FOUR from the following, with neat sketch a. Design of pile foundation.	5x4=20	