RollNo.					

M.Tech. (SEM I) ODD SEMESTER THEORY EXAMINATION, 2015-16 ANALOG CMOS DESIGN

Maximum Marks:100

Time: 3 Hours **Note:** *Attempt any five questions. All questions carry equal marks*

1(a) Determine the small signal gain and the input common mode range (CMR) for the diff-amps shown in Fig 1. Estimate the slew-rate limitations in charging and discharging a 2pF capacitors tied to the outputs of the differential-amps as shown in figure 1

Figure 1

(b)Draw and analyze the cascode differential amplifier circuit using MOSFETs. What is the main drawback of this circuit?

2 (a) Develop a bandgap voltage reference circuit and determine the following:

- (i) V_{ref}
- (ii) The conditions under which the TC of the reference is zero.
- (b) Design three current sources with values of 10, 20 and 50 μ A using n- channel current sink

of 10 μ A. Assume V_{DD} = -V_{SS} = 2.5 V, V_{GS} = 1.2 V and length of the devices = 5 μ m,

 $V_{Thn} = 0.83 \text{ V}, V_{Thp} = 0.91 \text{ V}, K_{pn} = 50 \text{ } \mu\text{A} \text{ } / \text{V}^2 \text{ and } K_{pp} = 17 \text{ } \mu\text{A} \text{ } / \text{V}^2.$

- 3(a) Draw a CMOS Op-Amp circuit. Discuss design parameters with characteristic.
 - (b)Explain the two stage CMOS Op-Amp circuit analysis on the basic of the following design Parameter (i) Differential Amplifier Bias Current Iss (ii) Selection of the Second stage bias current.
- **4(a)** Draw the CMOS configuration of Operational Transconductance Amplifier and discuss its advantages and limitations.
- (b) Design a universal biquad g_m -C filter using two identical OTA and determine natural frequency and Q of the filter. Enlist the transfer function for each (i.e LP, HP, BP, BR) configuration.
- **5(a)** A DAC has a full–scale voltage of 4.97 using a 5V reference, and its minimum output voltage is limited by the value of one LSB. Determine the resolution and dynamic range of the converter
 - (b) Design a 3-bit charge scaling DAC and find the value of the output voltage for $D_2D_1D_0$ =010. Assume that V_{REF} =5V and C=0.5pF
 - (c) Draw a block diagram of a Flash ADC and discuss its advantages and limitation
 - (d) Perform the operation of a 3-bit successive approximation ADC with $V_{REF} = 8$. Make a table that consists of $D_2D_1D_0$, $B_2 B_1 B_0$, V_{OUT} and the comparator output, which shows the binary search algorithm of the converter for $V_{IN} = 5.5 V$ and 2.5 V.
- 6. Write short notes on the following
 - (a) Analog CMOS Multiplier
 - (b) CMOS Comparator
 - (c) Basic design of CMOS RF Circuits