Paper Code: MCA 114

MCA (SEM II) EVEN SEMESTER EXAMINATION 2015-16 DISCRETE MATHEMATICS

Roll No.

[Time: 3 hrs.]

Note- Attempt All Questions. All Questions carry equal marks:-

- **1.** Attempt *any four* parts of the following:
 - (a) Let $S_k = \{ \dots, 1, 0, 1, \dots \}$. Find $\bigcup_{k=1}^n S_k$ and $\bigcup_{k=1}^\infty S_k$.
 - **(b)** Prove S and T be two sets. Then prove the following:
 - (i) $S T \subseteq S$ (ii) $S \cup (T S) = S \cup T$
 - (c) State the conditions for which a relation R on a set of S of integers is not reflexive and not transitive.
 - (d) Let f: $\mathbb{R} \to \mathbb{R}$, where $f(x) = x^2$. Find $f^{-1}(-\infty \le x \le 0)$.
 - (e) Prove the following inequality using mathematical induction
 - 1 + n^3 > n + n^2 for all natural number n \ge 2.
 - (f) Let f: $RxR \rightarrow Rx R$. Find f⁻¹if exists for $f(x, y) = (x^{1/2}, y^{1/2})$
- 2. Attempt *any two* parts of the following: [10X 2 = 20]
 (a) Define Abelian group. Prove that a group G is Abelian if and only if

 $(x y)^{-1} = x^{-1} y^{-1}$ for all x, y in G.

- **(b)**(i) Prove that the intersection of two subgroups of a group *G* is also a subgroup of *G*.
 - (ii) Let $G = (Z^2, +)$ be a group and let H be a subgroup of G, where $H = \{(x, y) | x = y\}$

Find the left cosets of H in G.

- (c) (i) Let (R, +, .) be a ring. If $a^2 = a$. a=a, $\forall a \in R$, then prove that a + a = 0; and ab + ba = 0;
 - (ii) Show that *R* is a commutative ring.
- **3.** Attempt *any two* parts of the following: [10X 2 = 20]
 - (a) What is a Hasse diagram? Consider a set S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Draw the Hasse diagram when partially ordered by divisibility.
 - (b) (i) Let a Boolean expression f(x, y z) = x y' + xyz' + x'yz'. Then show that $f(x, y, z) + z' \neq f(x, y z)$
 - (ii) Let a Boolean function f(x, y, z) = x'y + xyz', then show that ff' = 0. (c) (i) Simplify the following Boolean function using Karnaughmap $F(w, x, y, z) = \prod (0, 1, 2, 3, 4, 6, 12)$

[5X4 = 20]

[Max. Marks: 100]

- (ii) Explain the working a flip-flop.
- **4.** Attempt *any two* parts of the following: [10X 2 = 20]
 - (a) Prove the validity of the following argument

 $P \rightarrow Q, \neg P \rightarrow R, and R \rightarrow S / \therefore \neg Q \rightarrow S$

(b) Determine a suitable conclusion for the given premises

$$P \rightarrow (R \land S), \neg (R \land S) and \neg P \rightarrow S$$

(c) Compute the relationship between quantifiers. Explain your answer with example using first order predicates.

5. Attempt *any two* parts of the following: [10X 2 = 20]
 (a) (i) What is a Binary tree? Determine a postfix form of the following expression ¬(P∧Q) ↔ ¬P∨¬Q

(ii) Define planar graphs and bipartite graphs with examples. Also describe graph coloring problem.

- (b) (i) Let T(n) = 3 T(n/2) + 5 and T(1) = 3. Find $T(2^k)$, where k is a positive integer.
 - (iii) Solve the following recurrence

 $T(n) = 2 T(\sqrt{n}) + 1$, where *n* is a perfect square greater than 1 and T(2) = 3.

(c) (i) Let ∑ = {0, 1}. Determine the number of strings of length 8 has exactly three 1's.
(ii) Explain Polya's counting theory with an example.