]	Paper Code: MA-401	Roll No.		
		B.Tech.		
	(SEM IV) EVEN SE	MESTER EXA	MINATIO	N, 2015-16
	COMPUTER BA	ASED NUMER	ICAL MET	HODS
[Ti	ime: 3 hrs.]			[Max. Marks: 100]
I	Note: i. Attempt <i>ALL</i> questions. ii. Assume suitable data, if require	ed.		
1.	Attempt any two parts of the following:-			[10x2=20]
	(a) Using Muller's method, find a root of	the following equat $x^3 + 2x^2 + 19x - $		
	(b) Derive Newton Raphson method to f method.			Find the order of convergence of this
	(c) Using Chebyshev method, find a real	root of the equation $x^4 - x - x^4$	10 = 0	
2.	Attempt any two parts of the following:-			[10x2=20]
	(a) Solve the following system of linear places.		-	el method correct up to five decimal
		19x + 11y + 5		
		13x + 23y + 7 29x + 11y + 43		
	(b) Solve the following system of equation			
		$\mathbf{x} + 2\mathbf{y} + 3\mathbf{z} =$	5	
		2x + 8y + 22z		
		3x + 22y + 82	2z = -10	
	(c) Describe the Cholesky LL^{T} -factoriza	tion method. Hence	solve the follow	ving system of equations
		5x + 11y + 19z		8.9
		11x + 19y + 13z		
		19x + 13y + 31z	z = 41	
3.	Attempt any two parts of the following: -			[10x2=20]
	five. It is known that there is error in			
	f(4). Correct the error. $\begin{array}{c c} x & 0\\ \hline y = f(x) & 1 \end{array}$	1 2 3 4 2 33 254 1035	5 6 5 3127 7777]

(b) Using the Langarage method, find the interpolatory polynomial for the following data:

x	0	1	2	3	4	5
f(x)	1	14	15	17	5	11

Printed Pages: 2

(c) Find the cubic spline interpolation for the following data:

e interpolation for the following data.							
X	1	2	3	4	5		
f(x)	1	0	1	0	1		

- 4. Attempt any two parts of the following: -
 - (a) Evaluate the following using 1/3 -Simpson's rule.

$$\int_{0} \frac{dx}{1+x3}$$

6

Also find the error in 1/3 -Simpson's rule.

(b) Use Romberg's method to compute the following, correct up to four decimal places.

$$\int_{0}^{1} \frac{dx}{1+x3}$$

(c) Find f'(4) from the following data.

	x	3	5 11		27	34	
	f(x)	-13	23	899	17315	35606	

- 5. Attempt any two parts of the following: -
 - (a) Solve the following by Euler's modified method. Perform five iterations.

given t

$$\frac{dy}{dx} = y + x$$

$$y(o) = 1$$

(b) Apply Runge-Kutta 4th order method to find the approximate value of y for x = 0.6 in step length of 0.2, if

$$\frac{dy}{dx} = x + y2$$
hat $y(o) = 1$

(c) Solve $\left(\frac{\partial 2u}{\partial x^2}\right) + \left(\frac{\partial 2u}{\partial y^2}\right) = 0$ over the square region of side 4 units, satisfying the following boundary conditions. (Choose h = 1 unit)

$$u(x,0) = 3x \text{ for } 0 \le x \le 4 u(x,4) = x^2 \text{ for } 0 \le x \le 4 u(0,y) = 0 \text{ for } 0 \le y \le 4 u(4,y) = 12 + y \text{ for } 0 \le y \le 4$$

[MA-401]

method. Perform f $\frac{dy}{dx} = y + x$

$$\frac{y}{x} = x + y^2$$

[10x2=20]

[10x2=20]