[EC-404]

Paper Code: EC-404

B.Tech. (SEM IV) EVEN SEMESTER EXAMINATION, 2015-16 ELECTROMAGNETIC FIELD THEORY

[Time: 2 hrs.]

- 1. Attempt any FOUR of the following:-
 - (a) Two points are given as P (2, -1, -3) and Q (1, 3, 4). Give the vector that extends from P to Q in (i) Cartesian coordinates (ii) cylindrical coordinates.
 - (b) Find the gradient of the following scalar field:
 - (i) $U = \rho^2 z \cos 2\phi$
 - (ii) V=10rsin² θ cos ϕ
 - (c) Explain the physical significance of divergence, gradient and curl.
 - (d) A charge Q_0 , located at the origin in free space, produces a field for which $E_Z = 1kV/m$ at point P (-2, 1,-1). (i) Find Q_0 ,(ii) Find E, at M (1, 6, 5).
 - (e) What is Gauss's law? Give the applications of Gauss's law.
 - (f) Within the cylinder $\rho=2$, $0 \le z \le 1$, the potential is given by $V=100+50\rho+150\rho \sin \varphi V$.
 - (i) Find V, E, D and ρ_v at P(1,60⁰,0.5) in free space .
 - (ii) How much charge lies within the cylinder?
- 2. Attempt any Two parts of the following:-
 - (a) Derive an expression for continuity equation and relaxation time.
 - (b) Drive the expression for the capacitance of a coaxial capacitor. Two conducting spherical shells have radii a=3cm and b=6cm. The interior is a perfect dielectric for which $\varepsilon_r=8$, calculate its capacitance.
 - (c) Describe the boundary condition in electrostatic field for (i) dielectric-dielectric (ii) conductor –dielectric (iii) conductor -free space boundary conditions.
- 3. Attempt any TWO of the following:-
 - (a) Describe biot-savart's law. A circular loop located on $x^2+y^2= 9$, z=0 plane and carries a direct current of 10A along a_{ϕ} direction. Determine H at (0, 0, 4) and (0, 0, -4).
 - (b) Describe the magnetic boundary condition. Given that $H=24a_x-30a_y+40a_zkA/m$ in region 1, Z>0 with $\mu_r=50$. If z=0 separates regions 1 and 2 and carries $6a_x kA/m$, determine the magnetic flux density in region 2, z<0, with $\mu_r=100$.
 - (c) State and explain Maxwell's equation in both differential and integral form for time varying field and also discuss its physical significance.
- 4. Attempt any TWO of the following:-
 - (a) Derive the wave equation for free space. For a lossy dielectric material having $\mu_{r=1}$, $\epsilon_r = 40$, $\sigma = 20$ S/m, calculate attenuation constant, phase shift and intrinsic impedance at a frequency of 9GHz.
 - (b) What is pointing vector? Discuss the pointing theorem and explain the physical meaning of each integral involved there in.
 - (c) The magnetic field component of an EM wave propagating through a nonmagnetic medium ($\mu = \mu_0$) is H= 25 sin(2×10⁸t +6x)a_y mA/m determine:
 - (i) The direction of wave propagation
 - (ii) The permittivity of the medium.
 - (iii) The electric field intensity.

[Max. Marks: 50]

[3.5x4=14]

[6x2=12]

Roll No.