Paper Code: EC-201/EC-101

B. TECH. (SEM II) EVEN SEMESTER EXAMINATION, 2015-16 ELECTRONICS ENGINEERING

Roll No.

[Time: 3 hrs.]

Note: - Attempt all questions. All questions carry equal marks.

1. Attempt any four parts of the following: -

- (a) Describe the difference between *n*-type and *p*-type semiconductor materials. Also give energy band diagram.
- (b) Determine the diode current at 27°C for a silicon diode with *Is* 30 nA and an applied forward bias of 0.7 V.
- (c) Describe in your own words how diffusion and transition capacitances differ.
- (d) Determine V_0 for the following circuit shown in Fig. 1. Also name the configuration.

- (e) Determine the range of values of V_s for the zener diode to remain in 'ON' state. Given for zener diode V_z=20V, I_{Zmax}=50mA, R_z=0, shown in Fig. 2
- (f) Determine Vo for each network of Fig.3 (a) and Fig.3 (b) for the given input shown.

- 2. Attempt any four parts of the following: -
 - (a) Design a clamper to perform the function indicated in Fig. 4.

[5x4=20]

[Max. Marks: 100]

[5x4=20]

Printed Pages: 2

- (b) Design a voltage regulator that will maintain an output voltage of 25 V across a 1k Ω load with an input that will vary between 30 and 50 V. That is, determine the proper value of *Rs* and the maximum current I_{ZM} .
- (c) What is the major difference between a bipolar and a unipolar device?
- (d) For the voltage divider bias circuit, determine I_{BQ} , I_{CQ} , V_{CEQ} , V_C , V_E , V_B and $I_{C sat}$ shown in Fig .5.

- (e) Given $V_c = 8V$, determine I_B , I_C , β and V_{CE} , for the circuit shown in Fig.6.
- (f) Determine R_C and R_B for a fixed-bias configuration if $V_{CC} = 12$ V, $\beta = 80$, and $I_{CQ} = 3.0$ mA with $V_{CEQ} = 6$ V. Use standard values.
- 3. Attempt any two parts of the following: -
 - (a) Draw the construction of a JFET and explain its principle of operation with neat diagram. Also sketch its V-I characteristics. Define pinch-off voltage and show on characteristics.
 - (b) Describe briefly, the construction of a MOSFET in Enhancement mode. Draw its characteristics. Also define the Shockley's equation, and derive the expression for g_m.
 - (c) Determine the resistance offered by a FET whose drain current changes by 7mA for a change of 5V in gate-source voltage, given its amplification factor is 10.
- 4. Attempt any two parts of the following: -
 - (a) What are the properties of an ideal operational amplifier? Define and explain the term common mode rejection ratio (CMRR) and virtual ground in op-amp.
 - (b) Explain with the help of circuit diagrams how it is used as

(i) Subtractor

- (ii) Differentiator erive an expression for the output voltage
- (c) Sketch a three input inverting summing circuit and derive an expression for the output voltage. Design a Non-Inverting amplifier capable of providing a voltage gain of 15. Assume ideal Op-Amp and Resistances used should not be exceeding 30K Ω .
- 5. Attempt any two parts of the following: -
 - (a) How the construction of the hot-carrier diode is significantly different from the conventional semiconductor diode. Also describe its mode of operations and compare its characteristic a p-n junction diode.
 - (b) Draw the construction and explain the characteristics of the following devices:(i) Photodiode (ii) Tunnel diode
 - (c) Draw the construction and explain the characteristics of the following devices: (i) SCR (ii) TRIAC

[10x2=20]

[10x2=20]

[10x2=20]