B.Tech.

(SEM V) ODD SEMESTER EXAMINATION 2015-16 **FUNDAMENTALS OF EM THEORY**

[Time: 2 hrs.]

EC 508

1. Attempt any FOUR of the following questions:

- (a) Given that vector $M=-10a_x + 4a_y-8a_z$ and $N=8a+7a_y-2a_z$. Find (a) a unit vector in the direction of -M+2N, (b) magnitude of $5a_x+N-3M$, (c) |M| |2N|(M+N).
- (b) Express the vector that extends from point P (-3,-4, 5) to Q (2, 0,-1) in (a) rectangular coordinates (b) cylindrical coordinates system.
- (c) Explain the physical significance of divergence and curl.
- (d) State and explain coulomb's law. Calculate the electric field intensity at point (1,1,1) by four identical point charges of 3nC located at (1,1,0), (-1,1,0), (-1,-1,0) and (1,-1,0).
- (e) Find gradient of V= $2\rho^3 z \cos 2\phi$.
- (f) What is Gauss's law? Give the applications of Gauss's law.

2. Attempt any Two parts of the following questions:

- (a) Drive the expression for the capacitance of a coaxial capacitor. Determine the capacitance of a parallel plate capacitor of area 16 cm2, separate 8cm, when a mica sheet of thickness 2cm with $\varepsilon_r = 10$ is inserted between the paths of the capacitor.
- (b) State and explain the Poisson's and Laplace's equation.
- (c) Describe the boundary condition in electrostatic field for (a) dielectric-dielectric boundry (b) conductor -dielectric (c) conductor and free space.

3. Attempt any TWO of the following questions:

- a) State biot- savart's law and drive an expression for magnetic field intensity due to infinite straight line current carrying wire.
- b) Describe the magnetic boundary condition. Let us assume that $\mu 1=4\mu$ H/m in region 1where Z>0, while $\mu 2=7\mu$ H/m in region 2 for Z<0, Let K=80ax A/m on the surface z=0. Establish a field B1 = 2ax-3ay+az mT in region 1 find the value of B2 in region 2.
- c) State and explain Maxwell's equation in both differential and integral form for time varying field and also discussed its physical significance.

4. Attempt any TWO of the following questions:

- a) Derive the wave equation for free space.
- b) Derive expression for the attenuation constant α and phase shift constant β .
- c) For uniform plane wave in sea water, find the value of Attenuation Constant, Phase Constant, Intrinsic impedance and wavelength at 10⁵ MHz. Given that $\sigma = 4$ mho/m and $\epsilon = 80 \epsilon_0$ and μ $=\mu_0$

Roll No.

(6x2=12)

(6x2=12)

(6x2=12)

(3.5x4=14)

[Max. Marks: 50]