[2x10]

B.Tech. (SEM V) ODD SEMESTER EXAMINATION2015-16 Antenna and Wave Propagation

[Time: 3 hrs.]

Note- Attempt All Questions. All Questions carry equal marks:-

- 1. Attempt **any four** parts of the following.
 - a) Define the term antenna aperture. Derive the equation for directivity in terms of aperture.
 - b) Explain the following terms with respect to antenna:i) Field zones ii) Effective height.
 - c) Determine the directivity of the system if the radiation intensity
 - i) $U = U_m \cos^3 \theta$ ii) $U = U_m \sin \theta \sin^2 \phi$.
 - d) Derive a relation total received power and total transmitted power in terms of directivities.
 - e) Derive an expression for antenna efficiency in terms of radiation resistance.
 - f) An antenna has a directivity of 20 and a radiation efficiency of 90%. Compute the gain of the antenna in decibels.
- 2. Attempt any four parts of the following.
 - a) State and prove the power theorem.
 - b) Explain the principle of pattern multiplication.
 - c) Derive an expression for array factor of an array of N- isotropic sources.
 - d) A linear antenna consists of 4 isotropic sources. The distance between adjacent elements is $\frac{\lambda}{2}$. The power is applied with equal magnitudes and a phase differences –dr. Obtain the field pattern and find HPBW.
 - e) Prove that the width of main lobe of uniform end-fire array is broader than for a uniform broad side array.
 - f) Calculate the directivities in decibels for the following broadside arrays of point sources: i) N = 2, d = $\lambda/2$ ii) N = 10, d = $\lambda/2$.
- 3. Attempt any two parts of the following.

a) Write short notes on:

- i) Long wire antenna ii) Folded dipole antenna.
- b) i) A thin linear dipole antenna is $\lambda/12$ long and its loss resistance is 1.2 Ω . Find the radiation resistance and efficiency.
 - ii) How can we increase input impedance of Yagi-Uda antenna without affecting other parameters?
- c) Write short note on:
 - i) Image Theory ii) Equivalence principle.
- 4. Attempt **any two** parts of the following.

a) Derive the following expression for circular loop antenna with constant current.

- b) What is Microstrip antenna. Explain different excitation techniques.
- c) Describe a Helical Antenna.Explain its two modes of operation with relavant expressions.

[4x5]

[4x5]

[2x10]

[Max. Marks: 100]

Roll No.

5. Attempt **any two** parts of the following.

- a) i) Discuss the effect of Earth's magnetic field on Ionospheric propagation.
 - ii) A high frequency radio link has to be established between two points on the earth 200 Km away. The reflectionregion of the ionosphere is at a height of 200Km and has a critical frequency of 6 MHz. Calculate the MUF for thegiven path in case of flat earth.
- b) Explain the mechanism of Ionospheric propagation. Also derive an expression for the refractive index of an Ionospheric layer.

c) Define the terms

- i) Critical frequency f_c
- ii) Skip diatance D_{skip}
- iii) Maximum usable frequency f_{MUF}
- iv) Virtual Height.