Roll No.

B. Tech. (SEM. V) EXAMINATION, 2015-16 CHEMICAL ENGINEERING THERMODYNAMICS

Time: 3Hours]

CH-503

Note: (1) Attempt all questions

(2) Graph paper is required.

- Q1. Attempt any four parts of the following:
- a) Define the thermodynamic state and state factions?
- b) For an idea gas prove that

$$\frac{\Delta S}{R} = \int_{T_0}^T \frac{C_V^{ig}}{R} \frac{dT}{T} + \ln \frac{V}{V_0}$$

- Derive the mathematical statement of the thermodynamic second law. c)
- **d**) A center power plant, rated at 8x10⁵KW generated steam at 585K and discard heat to river at 295K. A thermal efficiency of plant is 70% of the maximum possible value how much heat is discarded to the river at rated power.
- A 40-kg steel casting (C_P=0.5 kJ/kg.K) at a temperature of 450^oC is quenched in 150 kg e) of oil (C_P=2.5 kJ/kg.K) at 25^oC. If there are no heat losses, what is change in entropy of (i) the casting (ii) the oil, and (iii) both consider together?
- An insulated, electrically heated tank for hot water contains 190 Kg liquid water at 60° C f) when a power outage occurs. If water is withdrawn from the tank at a steady rate of m = 0.2 kg/s, how long will it take for the temperature of water in the tank to drop from 60° C to 35° C? Assume cold water enters the tank at 10° C, and negligible heat losses from the tank. For liquid water let $C_P=C_V=C$, independent on T and P.
- Q2. Attempt any two parts of the following:

10x2=20

a) For the system methanol (1)/methyl acetate (2), the following equations provide a reasonable correlation for the activity coefficients:

 $ln\gamma_1 = Ax_2^2$ $ln\gamma_2 = Ax_1^2$ Where A=2.771-0.00523 T In addition, the following Antoine equations provide vapor pressures:

 $lnP_1^{sat} = 16.59158 - \frac{3643.31}{T-33.424}$ $lnP_2^{sat} = 14.25326 - \frac{2665.54}{T-53.424}$ Where T is in kelvins and the vapor pressures are in kPa. Assuming the validity of

modified Raoult's law. Calculate

(i) P and $\{y_i\}$, for t/T=45^oC/318.15 K and $x_1 = 0.25$

(ii) T and $\{y_i\}$, for P=101.33 kPa and $x_1 = 0.85$

b) A binary system of species 1 and 2 consists of vapor and liquid phases in equilibrium at temperature T, for which

 $ln\gamma_1 = 1.8x_2^2$ $ln\gamma_2 = 1.8x_1^2$ $lnP_1^{sat} = 1.24 \ bar$ $lnP_2^{sat} = 0.89 \ bar$

Assuming the validity of modified Raoult's law. Calculate

(i) Range of value of the overall mole fraction z_1 can this two phase system exist with a liquid mole fraction $x_1=0.65$?

(ii) The pressure P and vapor mole fraction y_1 within this range?

- c) Shows that the Gibbs/Duhem equation insures validity of the Lewis/Randall rule for the other species as it approaches purity.
- **Q3**. Attempt any two parts of the following:

10x2=20

[Total Marks: 100

5x4=20

- **a)** A vessel, divided into two parts by a partition, contains 4 mol of N₂ gas at 75^oC and 30 bar on one side and 2.5 mol of argon gas at 130^oC and 20 bar on the other. If the partition is removed and the gases mix adiabatically and completely, what is the change in entropy? Assume N₂ to be an ideal gas with $C_{V}=(5/2)$ R and argon to be an ideal gas with $C_{V}=(3/2)$ R.
- **b**) Develop a general equation to calculate $ln\hat{\Phi}_l$ values from compressibility-factor data.
- c) Determine the fugacity coefficients for nitrogen and methane in a N₂ (1) / CH₄ (2) mixture at 200 K and 30 bar if the mixture contains 40 mole% N₂. Experimental virial-cofficient data are as follows: B_{11} = -35.2, B_{22} = -105.0, B_{12} = -59.8 cm³ mol⁻¹,
- **Q4.** Attempt any two parts of the following:

10x2=20

a) A system formed initially of 2 mol CO₂, 5 mol H₂, and 1 mol CO undergoes the reactions

$$CO_2(g) + 3 H_2(g) \rightarrow CH_3OH(g) + H_2O(g)$$

$$\operatorname{CO}_2(g) + 3 \operatorname{H}_2(g) \rightarrow \operatorname{CO}(g) + \operatorname{H}_2\operatorname{O}(g)$$

Develop expressions for the mole fractions of the reacting species as functions of the reaction coordinates for the two reactions.

b) For the given reaction written as $\frac{1}{2}N_2(g) + \frac{3}{2}H_2(g) \rightarrow NH_3(g)$ with 0.5 mol N and 1.5 mol H as the initial amounts of reactants and with the assumption that the equilibrium mixture is an ideal gas, show that

$$\mathcal{E}_e = 1 - \left(1 + 1.299K\frac{P}{P^0}\right)^{-1/2}$$

c) Acetic acid is esterified in the liquid phase with ethanol at 100^oC and atmospheric pressure to produce ethyl acetate and water according to the reaction:

 $CH_3COOH(l) + C_2H_5OH(l) \rightarrow CH_3COOC_2H_5(l) + H_2O(l)$

If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium.

Data given:

	$CH_3COOC_2H_5(l)$	$CH_3COOH(l)$	$C_2H_5OH(l)$	$H_2O(l)$
ΔH_{f298}^0 in J	-480000	-484500	-277690	-285830
ΔG_{f298}^0 in J	-332200	-389900	-174780	-237129

Q5. Attempt any two parts of the following:

10x2=20

- a) Develop the equations that apply to the limiting case of binary LLE for which the α phase is very dilute in species 1 and the β phase is very dilute in species 2.
- **b**) Shows that all irreversible processes occurring at constant T and P proceed in such a direction as to cause a decrease in the Gibbs energy of the system.
- c) Write the short notes on Osmotic equilibrium and discuss the osmotic virial coefficient for an ideal solution.