B. Tech. (SEM V) ODD SEMESTER EXAMINATION 2015-16 Fluid Mechanics

Time: 2 Hours

Total Marks: 50

Note: (i) Attempt ALL questions.

(ii) Marks are indicated against each question.

(iii) Assume any data suitably, if required and not given.

1.	Atte	mpt any FOUR parts of the following 5x4=2	20		
	(a)	What is the difference between fluids and the solids? List out various properties	of		
		the fluids and define any three of these including the Dynamic viscosity.			
	(b)	Differentiate in between			
		i. Newtonian and Non-Newtonian fluid			
		11. Ideal and Real Fluid			
		111. Steady and Unsteady Fluid			
		IV. Rotation and Circulation V. Stream lines and Path lines			
	(c)	V. Stream miles and I all miles			
	(C)	Derive the continuity equation for three dimensional nows.			
	(d)	Define and Explain Velocity Potential and Stream Function giving the	eir		
		expressions. Write the relation in between Stream Function and Velocity Potenti	al.		
		Verify whether the following function satisfies the continuity equation or not. $\Phi = A (-2)$			
	(0)	$\Phi = A (x^2 - y^2)$			
	(8)	Show that the now is possible for the following velocity components.			
		$u = 2 x y$; $v = a^2 + x^2 - y^2$			
		Also derive the relation for the stream function in this case.			
2.	Atte	empt any TWO parts of the following 5x2=10			
	(a)	Derive an expression of Total Pressure and Centre of Pressure for a plate ly			
		vertically in a fluid. In your opinion what happens to the relative distance between			
		the center of pressure and center of gravity, if the plate is taken down to deeper			
		depths. An annular plate 2 m external diameter and 1 m internal diameter with its			
		greatest and least depths below the surface being 1.5 m and 0.75 m respectively.			
		Calculate the magnitude, direction and location of the force acting upon one side of			
		the plate due to water pressure			
	(b)	Derive the Bernoulli's equation. A pile line carrying oil of Sp. Gr. 0.80 changes in			
		diameter from 300mm at section-1 to 600mm at section-2, such that vertical			
		distance between these sections is 5.00m. If pressure at section-1 and section-2 are 100 kN/m^2 and 60 kN/m^2 respectively under a disabarra of 200 lit/sec data main a			
		the loss of head and direction of flow			

	(c)	Derive the equation for the orifice meter. Why the coefficient of discharge is much			
		lower in case of Orifice meter that that of the Venturi meter.			
3.	Atte	mpt any TWO parts of the following	5x2=10		
	(a)	Differentiate between the Laminar and Turbulent flows. Derive the Hazen-			
		Poiseuille equation for velocity. Also state the assumptions involved in it.			
	(b)	What are various methods of measurement of viscosity? Explain any one of these.			
		Define the terminal velocity. In a falling sphere viscometer, a lubricating oil of			
		density 900 kg/m ³ was placed in a 80 mm inside diameter tube. A 10 mm diameter			
		steel ball of density 8000 kg/m ³ was found to travel a distance of 950 mm in 19			
		seconds. Determine the viscosity of the oil.			
	(c)	What do you understand by the term 'Eddy Viscosity'? How Dynamic viscosity is			
	, í	different that of Eddy viscosity. Give a neat sketch of LDA for the velocity			
		measurement.			
4.	Atte	mpt any TWO parts of the following	5x2=10		
	(a)	What is the principle of dimensional homogeneity?			
	(b)	Define Geometrical Similarity and Kinematic Similarity?			
	(c)	State and explain the Buckingham's π -theorem. What are dimensional numbers			
		Define any three of the dimensional numbers			