Roll No. Paper Code: AS-401					

B.Tech. (SEM IV) EVEN SEMESTER EXAMINATION, 2015-16 ENGINEERING MATHEMATICS-III

[Time: 3 hrs.	.]			[M	ax. Marks: 100]
Note: - Attempt	all questions. All qu	estions carry equal	marks.		
1 . Attempt any Tv	vo parts of the follow	ving: —			[10x2 = 20]
(a)Define Analy Find the har determine a	tic function and deri monic conjugate of t nalytic function.	ve Cauchy — Riemar he function u(x,y) =	an equations. = $x^3 - 3 xy^2$, hence		
(b) Evaluate \int_{0}^{∞}	$\frac{\cos ax - \cos bx}{x^2} dx, a$	\geq b \geq 0, by using co	ontour integration.		
(c) State and pr where C is th	rove Cauchy's residu le circle z =3.	e theorem and Eval	hate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z}{(z-1)^2 (z-2)}$	² -dz,	
2 . Attempt any Tv	vo parts of the follow	ving: —			[10x2 = 20]
(a) State and P Fourier Cosir	rove change of scale ne transform of e^{-x^2}	property for Fourier $_{\infty}$	r transform & evalua	ate	
(b) By using Fo	urier Transform Pro	ve that $\int_{0}^{1} \frac{\cos \lambda x}{\lambda^2 + 1} d\lambda$	$=\frac{\pi}{2} e^{-x} , \qquad x \ge 0$).	
(c) Define Z –	transform. Find Z tra	nsform of c ^k cos h (α k), k \geq 0.		
3 . Attempt any Tv	wo parts of the follow	ving: —			[10x2 = 20]
(a) If P is the pu find a linear the following	ll required to lift a lo law of the form $P = r$ g data.	ad W by means of a nW + c conneting P	pulley block , and W, using		
Р	12	15	21	25	

where P and W are taken in kg - wt. Compute P when W = 150kg - wt.

70

100

120

(b) Define line of regression. The tangent of the angle between the lines of

regression y on x and x on y is 0.6 and $\sigma_x = \frac{1}{2}\sigma_y$, find the coefficient of correlation.

(c) Find the moment generating function of the exponential distribution.

 $f(x)=\frac{1}{c}e^{-x/c}, \ 0\leq x\leq \infty, c>0$ Hence, find its mean and Standard deviation.

50

W

Printed Pages-02

4. Attempt any Two parts of the following: -

[10x2 = 20]

(a)Discuss the Newton – Raphson method to find the roots of the equation f(x) = 0. Find the order of convergency of this method. Evaluate $\sqrt{21}$ corrected to four decimal places by Newton Raphson method.

(b)Find the value of sin 52° from the following table by Newton's forward formula.

θ°	45°	50°	55°	60°		
sin θ°	0.7071	0.7660	0.8192	0.8660		

(c)Apply Lagrange's formula to find f(5)given that f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16, f(7) = 128. Explain why the result differs from 2^5

5. Attempt any Two parts of the following: -

- (a) Using Runge Kutta method of fourth order, solve $\frac{dy}{dx} = 3x + \frac{1}{2}y$, with y (0) = 1 to determine y(0.1) and y(0.2) correct to four decimal places.
- (b) Solve the following system of linear equations by Gauss Seidel method:

$$28x + 4y - z = 32$$

$$2x + 17y + 4z = 35$$

$$x + 3y + 10z = 24$$
correct to four decimal places.
E) Discuss general quadrature formula. Evaluate
$$\int_{0.2}^{1.4} (\sin x - \log_e x + e^x) dx$$

by using Trapezoidal rule.

(c)