AS-101

Roll No.

B.Tech. (SEM-I) ODD SEMESTER EXAMINATION 2015-16 **MATHEMATICS-I**

Time 3 Hours

Maximum Marks 100

Note: Attempt all questions. All questions carry equal marks.

Q.1. Attempt any **Two** parts of the following.

(2 x

10=20)

(a) If $y = \sin(a\sin^{-1}x)$, then prove that $(i)(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (a^2-n^2)y_n = 0$ and (ii) find $(y_n)_0 = 0$

(b) Verify Euler's theorm for (i) $u = x^2yz - 4y^2z^2 + 2xz^3$ (ii) $u = \frac{x+y+z}{\sqrt{x}+\sqrt{y}+\sqrt{z}}$

(c) (i) Find the value of
$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} + \frac{dz}{\sqrt{1-z^2}}$$
 if $u = x^2 + y^2 + z^2 - 2xyz = 1$ (ii) Find $\frac{dz}{dt}$ if $z = \sin^{-1}(x-y), x = 3t, y = 4t^3$

Q.2. Attempt any **Two** parts of the following.

(2x

10=20)

(a)(i) If
$$x = r \sin \theta \cos \emptyset$$
, $y = r \sin \theta \sin \emptyset$, $z = r \cos \theta$, then show that $\frac{\partial (x, y, z)}{\partial (r, \theta, \emptyset)} = r^2 \sin \theta$.

- (ii) Find the shortest and longest distance from the point (1,2,-1) to the Sphere $x^2 + y^2 + z^2 = 24$.
- (b) Trace the curve (i) $r^2 = a^2 \cos 2\theta$ (ii) $x^3 + y^3 = 3axy$.
- (c)(i) Evaluate $\sqrt{25.15}$ using Taylor's theorem (ii) Expand e^{ax} sin by, into powers of x &y upto third degree terms,

Q.3. Attempt any **Two** parts of the following.

(2x)

10=20)

(a) Find the non – singular matrices P and Q such that the normal form of A is PAQ. Where
$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$$
, Also find the rank of A.

- (b) (i) Find the eigenvalues and corresponding eigenvectors of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
 - (ii)For what values of A and B the matrix $\begin{bmatrix} a & 4 \\ 1 & b \end{bmatrix}$ has 3 and 2 as its eigen values .
- (c) Verify Cayley Hamilton theorem for matrix $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 5 & 4 \\ 0 & 4 & 2 \end{bmatrix}$ and hence find A^{-1}

Q.4. Attempt any **Two** parts of the following.

 $(2 \times 10=20)$

(a) (i) Evaluate $\iint_R (x+y) dxdy$ where R is the region bounded by y=0, x+y=2 and $y^2=x$.

$$(ii) Evaluate \ \iiint_R (x+y+z) \ dx dy dz \ where \ R: (0 \leq x \leq 1), (1 \leq y \leq 2), (2 \leq z \leq 3)$$

(b) Change the order of integration for $I=\int\limits_{x=0}^2\int\limits_{y=x^2/4}^{3-x}xy\ dydx$ and hence evaluate it (c)(i) Prove that $\frac{\beta(p,q+1)}{q}=\frac{\beta(p+1,q)}{p}=\frac{\beta(p,q)}{p+q}$, (p>0,q>0)

(c)(i) Prove that
$$\frac{\beta(p,q+1)}{q} = \frac{\beta(p+1,q)}{p} = \frac{\beta(p,q)}{p+q}$$
, $(p>0,q>0)$

(ii) Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^4}$ using Beta and Gamma function.

Q.5. Attempt any **Two** parts of the following.

(2 x 10=20)

- (a) (i)Define gradient, divergence and curl of a vector and the physical interpretation of curl of a vector.
- (ii) Show that $\vec{F} = (y^2 z^2 + 3yz 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.
- (b) (i) If \vec{a} is a constant vector , evaluate div ($\vec{r} \times \vec{a}$) and curl ($\vec{r} \times \vec{a}$) where \vec{r} is a position vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k} .$
 - (ii)Evaluate curl (grad φ) where φ is a scalar.
- (c) Verify Green's theorem in the plane for $\int_{0}^{\infty} [(3x^2 8y^2) dx + (4y 6xy) dy]$ where C

is the region bounded by parabolas $y^2 = x$ and $y = x^2$.

Verify Stoke's theorem for $\vec{F} = (x^2 - y^2)\hat{i} + 2xy\hat{j}$ in the rectangular region bounded by x = 0, x = a, y = 0 and y = b